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ABSTRACT

With the prevalence of mobile e-commerce nowadays, a new type of

recommendation services, called intent recommendation, is widely

used in many mobile e-commerce Apps, such as Taobao and Ama-

zon. Different from traditional query recommendation and item

recommendation, intent recommendation is to automatically rec-

ommend user intent according to user historical behaviors without

any input when users open the App. Intent recommendation be-

comes very popular in the past two years, because of revealing

user latent intents and avoiding tedious input in mobile phones.

Existing methods used in industry usually need laboring feature

engineering. Moreover, they only utilize attribute and statistic in-

formation of users and queries, and fail to take full advantage of

rich interaction information in intent recommendation, which may

result in limited performances. In this paper, we propose to model

the complex objects and rich interactions in intent recommenda-

tion as a Heterogeneous Information Network. Furthermore, we

present a novel Metapath-guided Embedding method for Intent

Recommendation (called MEIRec). In order to fully utilize rich

structural information, we design ametapath-guided heterogeneous

Graph Neural Network to learn the embeddings of objects in intent

recommendation. In addition, in order to alleviate huge learning

parameters in embeddings, we propose a uniform term embedding

mechanism, in which embeddings of objects are made up with the

same term embedding space. Offline experiments on real large-scale

data show the superior performance of the proposed MEIRec, com-

pared to representative methods. Moreover, the results of online

experiments on Taobao e-commerce platform show that MEIRec
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not only gains a performance improvement of 1.54% on CTR metric,

but also attracts up to 2.66% of new users to search queries.
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1 INTRODUCTION

With the development of mobile Internet, the focus of e-commerce

has moved from personal computers to smart phones, and vari-

ous mobile e-commerce platforms have emerged. The benefits of

recommendation systems are well recognized as a basic service of

e-commerce platforms, which provide personalized recommenda-

tion sticking to user’s preference. In the past two years, a novel

recommendation service (named as intent recommendation in this

paper), in many e-commerce Apps (e.g., Taobao and Amazon) have

emerged, which automatically recommends user intent (presented

as several words) in a search box according to users’ historical

behaviors when users open an e-commerce App. There are several

reasons for the boom of intent recommendation in the era of mobile

Internet. First, since typingwords onmobile devices is more difficult

than on desktop computers, intent recommendation can save user

time without any input, which will raise user activity and stickiness.

Second, users may have no apparent intent or do not know how

to describe their intent, a personalized intent recommendation can

help users find what they really need.

Figure 1 illustrates an intent recommendation example on the

Taobao mobile App. According to user historic information, an

intent (e.g., presented as “air jordan”) will be automatically recom-

mended in the search box when a user opens the App. If the user

clicks the search button, he/she will jump to the corresponding
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item list page. In intent recommendation system, the historic infor-

mation can be roughly categorized into two types. The first type is

attribute data, containing attribute information of objects, such as

user profiles and item attributes. The other type is interaction data,

containing triple interaction among users, items, and queries, such

as user click (item) logs, user search (query) logs, and query guide

(item) logs.

In this paper, we define the intent recommendation as follows:

automatically recommend a personalized intent for a user accord-

ing to his/her historical behaviors without query input. Here, in

our application scenario, intent is presented as query, consisting

of several words or terms simply and directly reflecting user in-

tent. However, intent recommendation is different from traditional

query recommendation/suggestion [3, 14, 22] in the following two

aspects. (1) It recommends queries according to user behaviors (i.e.,

interactions), rather than similar previous queries. (2) It also does

not need users to input partial query. Also unlike previous study

on mobile query recommendation [24] which considers only user-

location-query relation, intent recommendation provides a flexible

framework to consider complex interactions on heterogeneous ob-

jects in real systems. It is also different from item recommendation

in several ways. (1) Our intent recommendation needs to consider

the interactions among triple-objects (i.e., users, items and queries),

rather than binary interactions between users and items in item

recommendation. (2) Different from atomic and static items in item

recommendation, intent (i.e., query constituted by words) always

changes dynamically.

Existing methods for intent recommendation used in industry,

such as Taobao and Amazon, usually extract handcrafted features,

and then feed these features to a classifier, e.g., GBDT [7] and XG-

Boost [4]. These methods heavily rely on domain knowledge and

need laboring feature engineering. They only utilize attribute and

statistic information of users and queries, and fail to take full advan-

tage of the rich interaction information among objects. However,

the interaction information is very abundant in real systems, and it

is really critical to capture user intent.

As a general information modeling method, Heterogeneous In-

formation Network (HIN) [18], consisting of multiple types of

objects and links, has been widely applied to many data mining

tasks [10, 17, 18]. In this paper, we propose to model the intent rec-

ommendation system with a HIN, through which we can flexibly

exploit its rich interaction information. As shown in Figure 2(a),

obviously, HIN clearly demonstrates objects in intent recommenda-

tion (e.g., users, items and queries) and their interaction relations,

such as “user click item”, “user search query” and “query guide

item”. Although, some HIN based recommendation methods have

been proposed [8, 19, 23], they mainly employ metapath based fea-

tures through exploiting the interaction relations between users

and items, which makes them hardly handle the triple-object inter-

actions in intent recommendation.

In this paper, we present a novelMetapath-guided Embedding

method for Intent Recommendation (called MEIRec). In order to

fully utilize rich interaction information in intent recommendation,

we propose to learn structural feature representations of users and

queries with heterogeneous Graph Neural Network (GNN). Con-

cretely, we present the metapath-guided neighbours to aggregate

rich neighbour information, where different aggregation functions

are designed according to the characteristics of different types of

neighboring information. In addition, in order to handle large-scale

data involved in intent recommendation, considering that both

queries and titles of items consist of a limited number of terms,

we design a uniform term embedding mechanism, in which em-

beddings of users and queries are made up with the same term

embedding space. With the static features used in existing sys-

tems, as well as the embeddings of users and queries learned from

interaction information, we build a prediction model for intent

recommendation.

The major contributions of this paper are summarized as follows:

• We propose an important, but seldom exploited, intent rec-

ommendation problem, which automatically recommends a

personalized intent according to user’s historical behaviors.

• We present a novel MEIRec model with GNN. Through mod-

eling intent recommendation system as a HIN, MEIRec uti-

lizes metapath-guided neighbours to exploit rich interaction

information in HIN. Moreover, a uniform term embedding

mechanism is designed to greatly reduce the parameter space.

• Extensive offline experiments on a large-scale real data show

that our MEIRec outperforms the representative baselines.

We also conduct online experiments on Taobao e-commerce

platform. The results show that our model significantly im-

proves key metrics considered by the platform. Particularly,

the platform attracts the 2.66% of new users to search the

recommended query with the help of our method.



2 PRELIMINARIES

In this section, we define some basic concepts used in our model.

DEFINITION 1. Intent Recommendation. Given a set <U, I, Q,

W, A, B>, where U = {u1, · · · ,up } denotes the set of p users,

I = {i1, · · · , iq } denotes the set of q items, Q = {q1, · · · ,qr }
denotes the set of r queries, W = {w1, · · · ,wn } denotes the set of

n terms, A denotes the attributes associated with objects, and B

denotes the interaction behaviors between different types of objects.

In our application, a query q ∈ Q or an item i ∈ I , is constituted by

several terms w ∈ W. The purpose of intent recommendation is

to recommend the most related intent (i.e., query) q ∈ Q to a user

u ∈ U.

Taking Figure 1 for example, for a useru ∈ U, when he refreshes

the App, we can utilize information from A and B to calculate the

preference score of u for a candidate query q ∈ Q, and recommend

the query with the highest score as user intent to the user u. It
is worth noting that the recommended query reflects user intent

through exploiting user historical interaction information. More-

over, the recommended query may be not previous queries, but

new phrases generated by the combination of existing terms.

We model our recommendation task in the setting of Heteroge-

neous Information Network (HIN) [20]. A HIN is defined as a

graph G = (V , E), which has more than one node type or link type.

In HIN, network schema is proposed to describe the meta struc-

ture of a network, which describes the object types and their interac-

tion relations. The metapath [20], a relation sequence connecting

two objects, is proposed to capture the structural and semantic

relation between objects.

Figure 2(a) shows a toy example of HIN and Figure 2(b) is the cor-

responding network schema. We can see that the network consists

of multiple types of objects (e.g, User (U), Item (I), Query (Q)) and

their rich interaction relations. We are particularly interested in

the metapaths that start from users and queries in our application,

which can reveal semantic relations for users and queries. For exam-

ple in Figure 2(c), “User − Item −Query (UIQ)” metapath indicates

user clicks items, and these items are guided by some queries. And

“Query −User − Item (QUI)” indicates a query is searched by some

users, and these users also click some items recently.

DEFINITION 2. Metapath-guided Neighbors. Given an object

o and a metapath ρ (start form o) in a HIN, the metapath-guided

neighbors is defined as the set of all visited objects when the object

o walks along the given metapath ρ. In addition, we denote the i-th
step neighbors of object o as N i

ρ (o). Specifically, N
0
ρ (o) is o itself.

Taking Figure 2(a) as an example, given the metapath “User −
Item − Query (UIQ)” and a user u2, we can get metapath-guided

neighbors asN1
UIQ

(u2) = {i1, i2},N
2
UIQ

(u2) = {q1,q2,q3}. Then, all

the metapath-guided neighbors of u2 are denoted as NUIQ(u2) =

{N0
UIQ

(u2),N
1
UIQ

(u2),N
2
UIQ

(u2)} = {u2, i1, i2,q1,q2,q3}.

3 THE MEIREC MODEL

In this section, we present the proposed modelMetapath-guided

Embedding for Intent Recommendation (MEIRec).

3.1 Overview

The basic idea of the proposed model MEIRec is to design a hetero-

geneous GNN for enriching the representations of users and queries.

With the help of HIN built from intent recommendation system,

MEIRec leverages metapaths to guide the selection of different-step

neighbors and designs a heterogeneous GNN to obtain the rich

embeddings of users and queries. Moreover, we represent different

types of objects with uniform term embedding for less parameters

learning, since queries and titles of items are constituted by a small

number of terms.

Figure 3 shows the overall framework of MEIRec. First, we use

the triple-object HIN containing <user, item, query> as input. Sec-

ond, we use the uniform term embedding to generate the initial

embeddings of items and queries. Third, we aggregate the infor-

mation of metapath-guided neighbors to learn the embeddings of

users and queries via heterogeneous GNN. After that, we fuse the

embeddings of users and queries based on different metapaths, re-

spectively. Finally, with the fused embeddings of users and queries,

accompanying with static features of users and queries, we predict

the probability that a user will search a specific query. We illustrate

these steps in detail in the following subsections.

3.2 Uniform Term Embedding

In previous neural-network based recommendation, every user or

query should have an unique embedding. In the intent recommen-

dation scenario, there are billions of users and queries. If we employ

traditional collaborative filtering or neural-network based meth-

ods to represent all users and queries, it will make the number of

parameters tremendous. Note that queries and titles of items are

constituted by terms and the number of terms is not many. So we

propose to represent the queries and items with a small number

of term embeddings. And thus we only need to learn the term em-

beddings, rather than all object embeddings. This method is able to

significantly reduce the number of parameters.

Specifically, we extract terms from the queries and items’ titles ,

and build a term lexicon W = {w1,w2, · · · ,wn−1,wn }. Note that

queries and items (i.e., their titles) are the combination of several

terms. For example, as shown in Figure 3(a)-(b), query "Hand Bag"

is constituted by terms "Hand" and "Bag", and item "LV Hand Bag"

is constituted by terms "LV", "Hand" and "Bag". Since the number of

the lexicon W is far less than the number of the queries and users,

the uniform term embedding can significantly reduce the number

of learned parameters. More importantly, the new queries that have

never been searched before can be represented by these terms.

We will illustrate how the uniform term embedding works with

two examples query q2 and item i2 shown in Figure 3(b), the query

q2 is constituted by the term set {w1,wn } and the item i2 has the
term set {w1,wn−1,wn }. We use multi-hot encoding to represent

the query q2 and item i2 as following:

{w1, w2, · · · , wn−1, wn }

q2 = (1, 0, · · · , 0, 1)

i2 = (1, 0, · · · , 1, 1).

(1)

Terms are important words or phrases. We use the AliWS (Alibaba Word Segmenter)
to segment the queries and items’ titles and select important words or phrases which
contains rich meanings
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Figure 3: The framework of MEIRec.

A term embedding f : M → Rd , whereM represents the dictionary

of term words, is a parameterized function mapping all the terms

to d-dimensional distributional vectors. In the look-up layer, the

queries or items are represented as combination of term embeddings

to extract their semantic information. Then we aggregate the term

embeddings to get the embeddings of queries or items as following:

Eq2 = д(ew1 ,ewn
), Ei2 = д(ew1 ,ewn−1 ,ewn

), (2)

where ewi
is the embedding of term wi and the д(·) means the

operation function applied to the terms. In our experiments, we

adopt the average function.

By using the terms from the same lexicon, we obtain the em-

beddings of queries and items in a uniform term embedding space.

Thus, term embeddings can be optimized by the embeddings of all

objects simultaneously. This leads to that term embeddings contain

the user-query and user-item interaction information in the em-

bedding layer. Moreover, we only need to learn term embeddings

with a small size (it is about 280000, compared to near ten millions

of objects, in our experiments), which significantly reduces the

complexity of our model.

3.3 Metapath-guided Heterogeneous Graph
Neural Network

Inspired by the basic idea of the GCNs which generates object

embeddings based on local neighbors [12, 21], we first propose a

UIQ path UQI path

Figure 4: A toy example ofmetapath-guided information ag-

gregation. Objects in this example are from Figure 2.

metapath-guided heterogeneous GNN. That is, we leverage metap-

aths to obtain different-step neighbors of an object, and the embed-

dings of users and queries are the aggregation of their neighbors

under different metapaths.

We present a toy example in Figure 4 to illustrate this process.

Here we describe how to obtain the embedding U2 of user u2 based
on multiple metapaths, such as UIQ and UQI. We first illustrate

how we aggregate neighbor information along path UIQ. We use

the uniform term embedding to obtain the initial embeddings of

queries. And then we aggregate the metapath-guided neighbors to



get the metapath-guided embedding of user u2. According to the

network structure in Figure 2(a), we get the 1-st step neighbors

set of u2 , N
1
UIQ

(u2) = {i1, i2}. For each node ik in the neighbors

set N1
UIQ

(u2), we extract the 2-nd step neighbor set N2
UIQ

(u2) =

{q1,q2,q3}. After we obtain the 1-st step and 2-nd step neighbors set
ofu2, we aggregate the embeddings of 2-nd step neighbors to obtain

the 1-st step neighbors’ embeddings. In this example, we aggregate

the embedding of query q1 to obtain the item i1’s embedding, and

aggregate the embeddings of queries q2 and q3 to obtain the item

i2’s embedding. Finally, we aggregate the embeddings of 1-st step

neighbors {i1, i2} to obtain embeddingU
UIQ
2 of user u2. Following

this process, we can get different metapath-guided embeddings

of u2, such as U
UQI
2 . Then we aggregate all the metapath-guided

embeddings to get final embedding of u2 (i.e.,U2).

3.4 User Modeling

In our model, we aggregate the information of different-step neigh-

bors to obtain the representationUi of user ui via metapath-guided

heterogeneous GNN. In this subsection, we show the how MEIRec

models user embedding in detail.

As shown in the upper box in Figure 3(c), in order to get the em-

beddingUi of userui , we select metapaths starting from target user.

We first search different-step neighbors along the metapath, and

then aggregate the embeddings of neighbors step by step. Taking

the metapath UIQ (meaning user clicks the items which had been

guided by queries) for example, we can obtain different-step neigh-

bors of a user ui . After we get the 1-st step and 2-nd step neighbors

set, we aggregate the embeddings of 2-nd step neighbors (query)

to obtain the 1-st step neighbors’ (item) embeddings and the em-

bedding I
UIQ
j of item i j in N1

UIQ
(ui ) based on the metapath UIQ

is:

I
UIQ
j = д(Eq1 , Eq2 , · · · ), (3)

where д(·) is the aggregation function. According to characteristics

of neighbors, we design different functions and in our model we

adopt the average function which gains an impressive performance

in our experiments. And the queries {q1,q2, · · · } are the neighbors
of item i j .

Next, we aggregate 1-st step neighbors’ (item) embeddings to

obtain the embeddingU
UIQ
i of user ui :

U
UIQ
i = д(I

UIQ
1 , I

UIQ
2 , · · · ), (4)

where the items {i1, i2, · · · } are the neighbors of userui . Since users
click queries or items with timestamp, we model the neighbors of

users (i.e., items or queries) as a sequence data. Recurrent Neural

Network (RNN), especially the Long Short TermMemory (LSTM) [2,

5] has been proved to perform well for sequential data. So MEIRec

leverages the LSTM to dynamically model the neighbors of users.

That is, the aggregation function д(·) is LSTM for the neighbors of

users.

Then we obtain the fused user embedding by aggregating em-

beddings based on different metapaths {ρ1, ρ2, · · · , ρk }:

Ui = д(U
ρ1
i ,U

ρ2
i , · · · ,U

ρk
i ), (5)

where the ρ is metapath starting from user.

3.5 Query Modeling

Similar to user information aggregation, we also obtain the fused

query embeddingQi based on metapaths {ρ1, ρ2, · · · , ρk }:

Qi = д(Q
ρ1
i ,Q

ρ2
i , · · · ,Q

ρk
i ), (6)

where the ρ is the metapath starting from query.

Note that the neighbors of queries (i.e., items and users ) are

not presented in the time order. So in our model, we leverage the

Convolutional Neural Network (CNN) to dynamically model the

neighbors of queries. That is, the aggregation function д(·) is CNN
for the neighbors of queries.

3.6 Optimization Objective

In our model, we predict the probability ŷi j of user ui search the

query qj which is in the range of [0,1] to ensure that the output

value is a probability. Through aggregating the neighbors of user

and query, we obtain the fused user embeddingUi for user ui and
fused query embeddingQ j for query qj . In addition, there are raw

static features used in traditional methods, include attributes of

users (queries) and static features from interaction information. We

feed these static features to a Multi-Layer Perceptron for obtaining

the representation of the static features Si j . Then, we concatenate
the embeddings of user, query and static features to fuse them.

Finally, we feed the fused embeddings into MLP layers to get the

predict score ŷi j . Then we have:

ŷi j = siдmoid(f (Ui ⊕Q j ⊕ Si j )), (7)

where the f (·) is the MLP layers with only one output, siдmoid(·) is
the sigmoid layer, and ⊕ is the embedding concatenate operation.

The loss function of our model is a point-wise loss function in

Equation 8.

J =
∑

i , j ∈Y∪Y−

(
yi j loдŷi j + (1 − yi j )loд(1 − ŷi j )

)
, (8)

where yi j is the label of the instance (i.e. 1 or 0) and the Y and the

Y− are the positive and negative instances set, respectively.

3.7 Model Analysis

Here we analyze the parameter space complexity of MEIRec. For

simplicity, we assume that there areM (billion-level) objects and

N (100K-level) terms. In addition, suppose that there are h hidden

layers with n neurons in our model and we set the dimension of

the embedding to d . We compare the parameter space complexity

between traditional latent factor and MEIRec. We first analyze the

parameter space complexity of the traditional latent factor model

which learns the embeddings of users and queries. The parameters

to learn consists of two parts: embedding matrix and weight matrix

of the hidden layer. The parameter space complexity of embedding

matrix is O(d ∗M), while the weight matrix of the hidden layer is

O(n ∗ h). So the whole parameter space complexity is O(d ∗M +
n ∗ h). In the real applications, because of the fact that d ∗ M �

n ∗ h, the parameter space complexity of traditional methods is

O(d ∗ M + n ∗ h) ≈ O(d ∗ M). However, it is not the case for our

MEIRec. MEIRec uses the uniform term embeddings instead of

embeddings of the users and items in the embedding layer, so

the parameter space complexity is O(d ∗ N + n ∗ h) ≈ O(d ∗ N ).

Because N 	 M , the parameter space complexity of MEIRec is



Table 1: The statistics of the datasets.

Dataset 1-day 3-day 5-day

Training size (positive) 2,000,000 6,000,000 9,999,999

Training size (all) 8,000,000 23,999,998 39,999,997

Validation size (positive) 2,000,000 2,000,000 1,949,143

Validation size (all) 7,999,997 8,000,000 7,949,142

Train users 4,792,621 11,489,531 16,419,735

Train queries 871,133 1,653,865 2,163,574

Validation users 4,819,489 4,809,497 4,790,912

Validation queries 876,636 859,488 787,672

New users in validation set 3,666,692 2,613,695 2,064,564

Density 4.8 × 10−7 3.1 × 10−7 2.8 × 10−7

much smaller than traditional methods. The smaller parameter

space complexity of MEIRec means small computational space and

high learning efficiency, which makes it suitable for large-scale data

for real applications.

4 OFFLINE EXPERIMENTS

4.1 Dataset

We collect a real-world large-scale dataset from Taobao mobile

application from Android and IOS online. We first extract 42 static

features for user, including gender, age, purchasing power, etc and

39 static features for query, including length, term size, CTR, etc.

And we construct a HIN based on interaction data collected during

10 days, consisting of about 100 million queries, 400 million users

and 400 million items. In addition, the HIN contains about 4 billion

search relations between users and queries, 20 billion click relations

between users and items, and 4 billion guide relations between items

and queries. The network constitutes structural information for the

training and validation samples.

Next, we introduce how to construct training and validation

samples. We utilize the interaction data during 5 days. Specifically,

each raw interaction record in the collected dataset contains <user,

recommended query, timestamp, label> representing that the rec-

ommended query has been shown to user at timestamp. And the

label indicates whether the user clicks the recommended query.

To better understand the performance of our proposed model, we

validate our model on different scales of data. In our offline ex-

periments, we use training data for different time periods (from 1

to 5 days) to predict the next one-day. Therefore, we have three

datasets with different scales marked as 1-day, 3-day and 5-day.

To get more robust results, we vary the size of the each training set

from 40% to 100%. The detailed statistics of the data are shown in

Table 1. Besides, in order to get term lexicon, we first use the AliWS

to segment the context of queries and titles of items to obtain a

term lexicon, and select 280,000 terms to meet the needs of Alibaba

e-commerce.

Our datasets have the following unique characteristics. First, the

datasets are large enough, and contain millions of users and queries

in both of training and validation set. Second, our datasets contain

about half to three quarters new users in validation set. Third, as the

density (i.e., (#interactions of users and queries)/(#users∗#queries))

shown in Table 1, the datesets are extremely sparse. These charac-

teristics of data bring great challenges to our model design.

4.2 Baselines and Evaluation Metrics

To validate the effectiveness of our proposed model, we use the

popular models used in industry (e.g., LR, DNN, and GBDT) with

different feature settings and a popular neural network based model

NeuMF. Note that those query recommendation models are not

included because of not suitable for our problem setting, and some

recent fancy models are also excluded due to not handling large-

scale data.

• LR [15]: It is a linear model with static features.

• DNN: With the same input setting as LR, we implement the

deep neural network with 3 layers MLP.

• GBDT [7]: It is a scalable tree-based model for feature learning

and classification task. We feed static features into GBDT.

• LR/DNN/GBDT+ DW: We feed the static features of users

and queries, as well as the pre-training embeddings learned

by DeepWalk (DW) [16] from structural information, into

LR/DNN/GBDT model.

• LR/DNN/GBDT+ MP: We feed the static features of users

and queries, as well as the pre-training embeddings learned

by MetaPath2vec (MP) [6] from structural information, into

LR/DNN/GBDT model.

• NeuMF [9]: It is the state-of-art neural network method for

top-N recommendation. Here we feed it with the structural

information (interactions between users and queries), since it

cannot be fed the static features.

• MEIRec: It’s our model with the input of the static features

and structural information.

In our experiments, we useAreaUnder receiver operator charac-

teristic Curve (AUC) [13] to evaluate the performance of different

models for comparison. The large AUC value means better perfor-

mance.

4.3 Detailed Implementation

We implement the proposed method based on Tensorflow [1]. For

ourmethod, we set the dimension of term embedding as 64.We use a

single-layer LSTMwith 64 hidden neurons to model the user-query-

sequence and user-item-sequence and use a single-layer CNN to

aggregate queries’ neighbors. For GBDT, the tree number is set as

200. For Deepwalk/MetaPath2vec, the dimension of embeddings is

set as 32. For all the methods, in the training stage, we randomly

initialize the model parameters with a Gaussian distribution, and

optimize the model with mini-batch Adam [11]. We set the batch

size as 512, and set the learning rate as 0.001. All the experiments

are performed in Nvidia Tesla P100 Cluster.

4.4 Performance Evaluation

The performances of MEIRec and the baselines are reported in

Table 2. The major findings from the experimental results can be

summarized as follows:

(1) MEIRec significantly outperforms all the compared baselines.

Compared to the best performance of baselines (i.e., GBDT + MP

or GBDT + DW, indicated with "*" at Table 2), MEIRec offers an

improvement of 2.1%~4.3% in the three datasets. The results show

that MEIRec achieves best results by using both static and structural

features. It indicates that our model adopts a more principled way to



Table 2: The AUC comparisons of different methods. The * indicates the best performance of the baselines. Best results of

all methods are indicated in bold. The last row indicates the percentage of improvements gained by the proposed method

compared to the best baseline.

Method
1-day 3-day 5-day

40% 60% 80% 100% 40% 60% 80% 100% 40% 60% 80% 100%

NeuMF 0.6014 0.6066 0.6136 0.6143 0.6168 0.6218 0.6249 0.6291 0.6172 0.6224 0.6246 0.6295

LR 0.6854 0.6838 0.6884 0.6889 0.6844 0.6863 0.6857 0.6865 0.6817 0.6831 0.6827 0.6836

LR+DW 0.6878 0.6904 0.6898 0.6930 0.6888 0.6896 0.6898 0.6900 0.6838 0.6842 0.6863 0.6867

LR+MP 0.6918 0.6936 0.6950 0.6969 0.6919 0.6930 0.6933 0.6933 0.6874 0.6890 0.6898 0.6899

DNN 0.6939 0.6981 0.6991 0.6997 0.6966 0.6985 0.6999 0.7008 0.6996 0.7011 0.7017 0.7029

DNN+DW 0.6962 0.6980 0.7003 0.7024 0.7005 0.7017 0.7024 0.7030 0.7017 0.7029 0.7040 0.7047

DNN+MP 0.6984 0.6992 0.7024 0.7057 0.7025 0.7040 0.7051 0.7057 0.7017 0.7044 0.7060 0.7069

GBDT 0.7071 0.7071 0.7067 0.7073 0.7070 0.7071 0.7072 0.7071 0.7067 0.7068 0.7072 0.7066

GBDT+DW 0.7114 0.7119 0.7112∗ 0.7118∗ 0.7109 0.7106 0.7106 0.7104 0.7109 0.7112 0.7109 0.7114

GBDT+MP 0.7122∗ 0.7127∗ 0.7110 0.7111 0.7123∗ 0.7122∗ 0.7122∗ 0.7124∗ 0.7118∗ 0.7114∗ 0.7114∗ 0.7120∗

MEIRec 0.7273 0.7302 0.7339 0.7346 0.7352 0.7369 0.7380 0.7390 0.7372 0.7401 0.7409 0.7425

Improvement 2.1% 2.5% 3.2% 3.2% 3.2% 3.5% 3.6% 3.7% 3.6% 4.0% 4.1% 4.3%

(a) 1-day (b) 3-day (c) 5-day

Figure 5: The AUC comparisons of MEIRec with different aggregation strategies.

(a) The AUC performances of

additive metapths.

(b) The AUC improvements of

additive metapths.

Figure 6: Performances of MEIRec with additive metapaths.

leverage static features and interaction relations for improving pre-

diction performance. And compared with pre-training embedding

methods (i.e., LR/DNN/GBDT+ DW and LR/DNN/GBDT+ MP), our

model learns the embeddings in a task-guided (i.e., classification

objective) way, which is more effective to learn embeddings for the

query task intent recommendation.

(2) Among these baselines, we find that the order of overall

performances is as follows: at method level, GBDT > DNN > LR

> NeuMF. Due to that NeuMF cannot learn the embeddings of

new users and new queries appeared in the validation set, new ob-

jects’ embeddings will be random variables, which makes the worst

performances of NeuMF. For this problem, GBDT is a good classifi-

cation model to fuse feature information, which makes it achieve

good performances. That is the reason why it is widely used in

real systems. And at feature level, (static features + heterogeneous

embeddings) based methods > (static features + homogeneous em-

beddings) based methods > static features based methods. This

ranking indicates that fusing more information could usually get

better performances. And we can also find that, using heteroge-

neous network embedding (i.e., MetaPath2vec) can get better per-

formances than homogeneous network embedding (i.e., Deepwalk).

It demonstrates that we should consider heterogeneity of objects

in HIN for better performances. At both levels, we conclude that

choosing a model plays a key role in intent recommendation, and

adopting appropriate methods to fuse more information could sig-

nificantly improve the performance. As a consequence, the MEIRec



(a) 1-day (b) 3-day (c) 5-day

Figure 7: Performances of MEIRec with different number of neighbors.

achieves best performances, due to the heterogeneous GNN model

and utilization of rich heterogeneous interactions.

(3) As the scale of data increasing, our model outperforms the

best baselines with an increased margin (from 2.1% to 4.3%). The

result further confirms that our model is more scalable for large-

scale datasets.

4.5 Effect of Aggregation Methods

In our model, we enrich the information of users and queries by

capturing their neighbor information along the given metapath.

In order to explore the effect of different neighbor aggregation

functions, we design different variants of MEIRec as follows.

• MEIRecstats : It only uses the static features.

• MEIRecstru : It only uses the structural information.

• MEIRecavд : Both structural information and static features

are used. We use the AVE function (i.e., average operation on

aggregated embeddings) to aggregate the neighbors of both

users and queries in this model.

• MEIReclstm : It uses the structural information and static fea-

tures. We use LSTM to aggregate the neighbors of users and

use AVE to aggregate the neighbors of queries in this model.

• MEIRec: It is the proposed model MEIRec.

The AUC comparisons of our proposed method with differ-

ent aggregation methods are shown in Figure 5. We can see that

the methods which only use static or structural information (i.e.,

MEIRecstats , MEIRecstru ) get worse results than the methods us-

ing both information. MEIRecstru outperforms MEIRecstats (same

as DNN), indicating structural information is more powerful than

static features for this task, and our structural fusing strategy is

effective. The performance of MEIRecstats also indicates that static

information have limited effect on the results of MEIRec. Moreover,

the results of MEIRecavд confirm that use more information of

both is significantly better than the methods only using one single

kind of features. On the other hand, the model MEIReclstm and

MEIRec gain more improvements than MEIRecavд , indicating that

it is necessary to leverage different aggregation functions for dif-

ferent types of neighbors. In our model, for user side, the LSTM

function capture time-sequence information for user behaviors,

such as user click item sequence and user search query sequence.

And for query side, the unordered functions (i.e., CNN or AVG) are

good enough to aggregate the neighbor information of query.

4.6 Effect of Different Metapaths

In our model, we aggregate different types of neighbors guided by

metapaths to improve the recommendation performance. To further

investigate the effect of different metapaths on learned embeddings

for the intent recommendation task, we observe the performance

of MEIRec through adding four informative metapaths one by one.

The four metapaths are UQI, QIQ, QUI, and UIQ, and they are added

into the model by their order.

Figure 6(a) is the AUC performance of MEIRec with additive

metapaths. The results shown in three datasets demonstrate the

performance of our proposed model stably increases as we add

metapaths one by one. Moreover, Figure 6(b) is the AUC improve-

ments of the variants (i.e., +QIQ, +QUI, +UIQ) against the model

only using the first metapath (i.e., +UQI). One can also see that the

performance of MEIRec with more metapaths gradually increases

as the scale of data increases. The results indicate that when we

deal with large-scale data, MEIRec with more metapaths usually

yields better performances. This gain demonstrates that adding new

informative metapaths plays an important role in learning task-

related embeddings. Note that we only employ four representative

metapaths in experiments due to the limitation of experimental

settings. However, MEIRec provides a flexible framework to utilize

more metapaths and integrate more heterogeneous interactions.

4.7 Effect of the Number of Neighbors

In this subsection, we conduct a series of experiments on three

datasets to evaluate the effect of the number of neighbors on perfor-

mance. Specifically, for query side, we set the number of neighbors

as a fixed value 5, and for user side, we vary the number of neighbors

from 3 to 10.

As illustrated in Figure 7, for different number of neighbors, the

red line represents the AUC performance, and the yellow line indi-

cates the running time. One can see that the performance of our

model steadily improves as the number of neighbors grows. Note

that, with the increasing neighbors, the performances of MEIRec

still increase, but tend to be steady. We only set the maximum

number of neighbors as 10, due to the limitation of computation

resource. This conforms that the information of neighbors can ef-

fectively enhance the representations of users. It also demonstrates

that the more local neighbor information is more effective in mod-

eling the user’s personalized intent. However, we also notice that



Table 3: Online A/B testing experiments results.

Data Methods CTR Unique Click UCTR

Android

GBDT 1.746% 256,116 13.939%

MEIRec 1.758% 260,634 14.229%

Improvement 0.70% 1.76% 2.07%

IOS

GBDT 0.7687% 62,462 5.2579%

MEIRec 0.8056% 65,895 5.5436%

Improvement 4.79% 5.50% 5.43%

Total

GBDT 1.4035% 318,578 10.5252%

MEIRec 1.4252% 326,529 10.8052%

Improvement 1.54% 2.50% 2.66%

as the number of neighbors grows, the running time of the model

also increases. Therefore, in order to tradeoff between accuracy and

running time, we usually set the number of neighbors as 5.

5 ONLINE EXPERIMENTS

To furtherly evaluate the proposed model, we conduct online ex-

periments in Taobao mobile App. We conduct a bucket testing (i.e.,

A/B testing) online to test the users’ response to our model against

baseline. We select one bucket for baseline, and another bucket

for our model. And we select the GBDT model for comparison for

that GBDT is used in real system. We use the metric CTR, Unique

Click, and UCTR to evaluate the online performance, where CTR

andUCTR=Unique Click/Unique Visitor indicate change of the

click ratio and visit ratio.

The results are shown in Table 3. We can see that, compared to

the GBDT, MEIRec achieves performance improvement in all met-

rics, which indicates that incorporating interaction information can

better capture user latent intent. Our model gains the improvement

of 0.70%, 4.79% and 1.54% for Android, IOS and Total respectively in

CTR. Since the CTR is to measure the ratio of clicks against impres-

sions, the improvement of CTR shows that our model can greatly

improve the user’s search experience. In addition, the metric UCTR

indicates how many unique visitors click the recommended query,

and it gains an improvement of 2.07%, 5.43% and 2.66% for Android,

IOS and Total. The improvement of UCTR shows that our model

have an advantage in attracting new users to search queries.

6 CONCLUSION

In this paper, we study the intent recommendation problem which

plays an important role in increasing user activity and stickiness

in mobile e-commerce. In order to solve the challenges in intent

recommendation, we model objects and interactions in intent rec-

ommendation system with a HIN and propose a novel metapath-

guided GNN method for intent recommendation, called MEIRec.

MEIRec utilizes metapath-guided neighbours to exploit rich struc-

tural information in HIN. Moreover, a uniform term embedding is

designed in MEIRec, which not only significantly reduces parame-

ter space, but also makes it suitable for new generated users and

queries. The extensive results on offline and online experiments

demonstrate the effectiveness of our proposed model.

The number of visitors who performed a click
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